Comsol -leaderboard other pages

Topics

NuFact prepares for a precision era

7 November 2025
NuFact 2025
Angles on mixing Neutrino physicists gathered in Liverpool in September. Credit: University of Liverpool

The 26th edition of the International Workshop on Neutrinos from Accelerators (NuFact) attracted more than 200 physicists to Liverpool from 1 to 6 September. There was no shortage of topics to discuss. Delegates debated oscillations, scattering, accelerators, muon physics, beyond-PMNS physics, detectors, and inclusion, diversity, equity, education and outreach (IDEEO).

Neutrino physics has come a long way since the discovery of neutrino oscillations in 1998. Experiments now measure oscillation parameters with a precision of a few per cent. At NuFact 2025, the IceCube collaboration reported new oscillation measurements using atmospheric neutrinos from 11 years of observations at the South Pole. The measurements achieve world-leading sensitivity on neutrino mixing angles, alongside new constraints on the unitarity of the neutrino mixing matrix. Meanwhile, the JUNO experiment in China celebrated the start of data-taking with its liquid-scintillator detector (see “JUNO takes aim at neutrino-mass hierarchy”). JUNO will determine the neutrino mass ordering by observing the fine oscillation patterns of antineutrinos produced in nuclear reactors.

Neutrino scattering

Beyond oscillations, a major theme of the conference was neutrino scattering. Although neutrinos are the most abundant massive particles in the universe, their interactions with matter remain poorly understood. Measuring and modelling these processes is essential: they probe nuclear structure and hadronic physics in a novel way, while also providing the foundation for oscillation analyses in current and next-generation experiments. Exciting advances were reported across the field. The SBND experiment at Fermilab announced the collection of around three million neutrino interactions using the Booster Neutrino Beam. ICARUS presented its first neutrino–argon cross-section measurement. MicroBooNE, MINERvA and T2K showcased new results on neutrino–nucleus interaction and compared them with theoretical models. The e4ν collaboration highlighted electron beams as potential sources of data to refine neutrino-scattering models, supporting efforts to achieve the detailed interaction picture needed for the coming precision era of oscillation physics. At higher energies, FASER and SND@LHC showcased their LHC neutrino observations with both emulsion and electronic detectors.

Neutrino physics is one of the most vibrant and global areas of particle physics today

CERN’s role in neutrino physics was on display throughout the conference. Beyond the results from ICARUS, FASER and SND@LHC, other contributions included the first observation of neutrinos in the ProtoDUNE detectors, the status of the MUonE experiment – aimed at measuring the hadronic contribution to the muon anomalous magnetic moment – and the latest results from NA61. The role of CERN’s Neutrino Platform was also highlighted in contributions about the T2K ND280 near-detector upgrade and the WAGASCI–BabyMIND detector, both of which were largely assembled and tested at CERN. Discussions featured the results of the Water Cherenkov Test Experiment, which operated in the T9 beamline to prototype technology for Hyper-Kamio­kande, and other novel CERN-based ideas, such as nuSCOPE – a proposal for a short-baseline experiment that would “tag” individual neutrinos at production, formed from the merging of ENUBET and NuTag. Building on a proof-of-principle result from NA62, which identified a neutrino candidate via its parent kaon decay, this technique could represent a paradigm shift in neutrino beam characterisation.

NuFact 2025 reinforced the importance of diversity and inclusion in science. The IDEEO working group led discussions on how varied perspectives and equitable participation strengthen collaboration, improve problem solving and attract the next generation of researchers. Dedicated sessions on education and outreach also highlighted innovative efforts to engage wider communities and ensure that the future of neutrino physics is both scientifically robust and socially inclusive. From precision oscillation measurements to ambitious new proposals, NuFact 2025 demonstrated that neutrino physics is one of the most vibrant and global areas of particle physics today.

CERN Courier Jobs

Events

bright-rec iop pub iop-science physcis connect