Kanta Dihal explores why quantum mechanics captures the imagination of writers – and how ‘quantum culture’ affects the public understanding of science.

How has quantum mechanics influenced culture in the last 100 years?
Quantum physics offers an opportunity to make the impossible seem plausible. For instance, if your superhero dies dramatically but the actor is still on the payroll, you have a few options available. You could pretend the hero miraculously survived the calamity of the previous instalment. You could also pretend the events of the previous instalment never happened. And then there is Star Wars: “Somehow, Palpatine returned.”
These days, however, quantum physics tends to come to the rescue. Because quantum physics offers the wonderful option to maintain that all previous events really happened, and yet your hero is still alive… in a parallel universe. Much is down to the remarkable cultural impact of the many-worlds interpretation of quantum physics, which has been steadily growing in fame (or notoriety) since Hugh Everett introduced it
in 1957.
Is quantum physics unique in helping fiction authors make the impossible seem possible?
Not really! Before the “quantum” handwave, there was “nuclear”: think of Dr Atomic from Watchmen, or Godzilla, as expressions of the utopian and dystopian expectations of that newly discovered branch of science. Before nuclear, there was electricity, with Frankenstein’s monster as perhaps its most important product. We can go all the way back to the invention of hydraulics in the ancient world, which led to an explosion of tales of liquid-operated automata – early forms of artificial intelligence – such as the bronze soldier Talos in ancient Greece. We have always used our latest discoveries to dream of a future in which our ancient tales of wonder could come true.
Is the many-worlds interpretation the most common theory used in science fiction inspired by quantum mechanics?
Many-worlds has become Marvel’s favourite trope. It allows them to expand on an increasingly entangled web of storylines that borrow from a range of remakes and reboots, as well as introducing gender and racial diversity into old stories. Marvel may have mainstreamed this interpretation, but the viewers of the average blockbuster may not realise exactly how niche it is, and how many alternatives there are. With many interpretations vying for acceptance, every once in a while a brave social scientist ventures to survey quantum-physicists’ preferences. These studies tend to confirm the dominance of the Copenhagen interpretation, with its collapse of the wavefunction rather than the branching universes characteristic of the Everett interpretation. In a 2016 study, for instance, only 6% of quantum physicists claimed that Everett was their favourite interpretation. In 2018 I looked through a stack of popular quantum-physics books published between 1980 and 2017, and found that more than half of these books endorse the many-worlds interpretation. A non-physicist might be forgiven for thinking that quantum physicists are split between two equal-sized enemy camps of Copenhagenists and Everettians.
What makes the many-worlds interpretation so compelling?
Answering this brings us to a fundamental question that fiction has enjoyed exploring since humans first told each other stories: what if? “What if the Nazis won the Second World War?” is pretty much an entire genre by itself these days. Before that, there were alternate histories of the American Civil War and many other key historical events. This means that the many-worlds interpretation fits smoothly into an existing narrative genre. It suggests that these alternate histories may be real, that they are potentially accessible to us and simply happening in a different dimension. Even the specific idea of branching alternative universes existed in fiction before Hugh Everett applied it to quantum mechanics. One famous example is the 1941 short story The Garden of Forking Paths by the Argentinian writer Jorge Luis Borges, in which a writer tries to create a novel in which everything that could happen, happens. His story anticipated the many-worlds interpretation so closely that Bryce DeWitt used an extract from it as the epigraph to his 1973 edited collection The Many-Worlds Interpretation of Quantum Mechanics. But the most uncanny example is, perhaps, Andre Norton’s science-fiction novel The Crossroads of Time, from 1956 – published when Everett was writing his thesis. In her novel, a group of historians invents a “possibility worlds” theory of history. The protagonist, Blake Walker, discovers that this theory is true when he meets a group of men from a parallel universe who are on the hunt for a universe-travelling criminal. Travelling with them, Blake ends up in a world where Hitler won the Battle of Britain. Of course, in fiction, only worlds in which a significant change has taken place are of any real interest to the reader or viewer. (Blake also visits a world inhabited by metal dinosaurs.) The truly uncountable number of slightly different universes Everett’s theory implies are extremely difficult to get our heads around. Nonetheless, our storytelling mindsets have long primed us for a fascination with the many-worlds interpretation.
Have writers put other interpretations to good use?
For someone who really wants to put their physics degree to use in their spare time, I’d recommend the works of Greg Egan: although his novel Quarantine uses the controversial conscious collapse interpretation, he always ensures that the maths checks out. Egan’s attitude towards the scientific content of his novels is best summed up by a quote on his blog: “A few reviewers complained that they had trouble keeping straight [the science of his novel Incandescence]. This leaves me wondering if they’ve really never encountered a book that benefits from being read with a pad of paper and a pen beside it, or whether they’re just so hung up on the idea that only non-fiction should be accompanied by note-taking and diagram-scribbling that it never even occurred to them to do this.”
What other quantum concepts are widely used and abused?
We have Albert Einstein to thank for the extremely evocative description of quantum entanglement as “spooky action at a distance”. As with most scientific phenomena, a catchy nickname such as this one is extremely effective for getting a concept to stick in the popular imagination. While Einstein himself did not initially believe quantum entanglement could be a real phenomenon, as it would violate local causality, we now have both evidence and applications of entanglement in the real world, most notably in quantum cryptography. But in science fiction, the most common application of quantum entanglement is in faster-than-light communication. In her 1966 novel Rocannon’s World, Ursula K Le Guin describes a device called the “ansible”, which interstellar travellers use to instantaneously communicate with each other across vast distances. Her term was so influential that it now regularly appears in science fiction as a widely accepted name for a faster-than-light communications device, the same way we have adopted the word “robot” from the 1920 play R.U.R. by Karel Čapek.
Fiction may get the science wrong, but that is often because the story it tries to tell existed long before the science
How were cultural interpretations of entanglement influenced by the development of quantum theory?
It wasn’t until the 1970s that no-signalling theorems conclusively proved that entanglement correlations, while instantaneous, cannot be controlled or used to send messages. Explaining why is a lot more complex than communicating the notion that observing a particle here has an effect on a particle there. Once again, quantum physics seemingly provides just enough scientific justification to resolve an issue that has plagued science fiction ever since the speed of light was discovered: how can we travel through space, exploring galaxies, settling on distant planets, if we cannot communicate with each other? This same line of thought has sparked another entanglement-related invention in fiction: what if we can send not just messages but also people, or even entire spaceships, across faster-than-light distances using entanglement? Conveniently, quantum physicists had come up with another extremely evocative term that fit this idea perfectly: quantum teleportation. Real quantum teleportation only transfers information. But the idea of teleportation is so deeply embedded in our storytelling past that we can’t help extrapolating it. From stories of gods that could appear anywhere at will to tales of portals that lead to strange new worlds, we have always felt limited by the speeds of travel we have managed to achieve – and once again, the speed of light seems to be a hard limit that quantum teleportation might be able to get us around. In his 2003 novel Timeline, Michael Crichton sends a group of researchers back in time using quantum teleportation, and the videogame Half-Life 2 contains teleportation devices that similarly seem to work through quantum entanglement.
What quantum concepts have unexplored cultural potential?
Clearly, interpretations other than many worlds have a PR problem, so is anyone willing to write a chart topper based on the relational interpretation or QBism? More generally, I think that any question we do not yet have an answer to, or any theory that remains untestable, is a potential source for an excellent story. Richard Feynman famously said, “I think I can safely say that nobody understands quantum mechanics.” Ironically, it is precisely because of this that quantum physics has become such a widespread building block of science fiction: it is just hard enough to understand, just unresolved and unexplained enough to keep our hopes up that one day we might discover that interstellar communication or inter-universe travel might be possible. Few people would choose the realities of theorising over these ancient dreams. That said, the theorising may never have happened without the dreams. How many of your colleagues are intimately acquainted with the very science fiction they criticise for having unrealistic physics? We are creatures of habit and convenience held together by stories, physicists no less than everyone else. This is why we come up with catchy names for theories, and stories about dead-and-alive cats. Fiction may often get the science wrong, but that is often because the story it tries to tell existed long before the science.