Comsol -leaderboard other pages

Topics

Quantum gravity beyond frameworks

9 September 2025
Matvej Bronštejn

Reconciling general relativity and quantum mechanics remains a central problem in fundamental physics. Though successful in their own domains, the two theories resist unification and offer incompatible views of space, time and matter. The field of quantum gravity, which has sought to resolve this tension for nearly a century, is still plagued by conceptual challenges, limited experimental guidance and a crowded landscape of competing approaches. Now in its third instalment, the “Quantum Gravity” conference series addresses this fragmentation by promoting open dialogue across communities. Organised under the auspices of the International Society for Quantum Gravity (ISQG), the 2025 edition took place from 21 to 25 July at Penn State University. The event gathered researchers working across a variety of frameworks – from random geometry and loop quantum gravity to string theory, holography and quantum information. At its core was the recognition that, regardless of specific research lines or affiliations, what matters is solving the puzzle.

One step to get there requires understanding the origin of dark energy, which drives the accelerated expansion of the universe and is typically modelled by a cosmological constant Λ. Yasaman K Yazdi (Dublin Institute for Advanced Studies) presented a case for causal set theory, reducing spacetime to a discrete collection of events, partially ordered to capture cause–effect relationships. In this context, like a quantum particle’s position and momentum, the cosmological constant and the spacetime volume are conjugate variables. This leads to the so-called “ever-present Λ” models, where fluctuations in the former scale as the inverse square root of the latter, decreasing over time but never vanishing. The intriguing agreement between the predicted size of these fluctuations and the observed amount of dark energy, while far from resolving quantum cosmology, stands as a compelling motivation for pursuing the approach.

In the spirit of John Wheeler’s “it from bit” proposal, Jakub Mielczarek (Jagiellonian University) suggested that our universe may itself evolve by computing – or at least admit a description in terms of quantum information processing. In loop quantum gravity, space is built from granular graphs known as spin networks, which capture the quantum properties of geometry. Drawing on ideas from tensor networks and holography, Mielczarek proposed that these structures can be reinterpreted as quantum circuits, with their combinatorial patterns reflected in the logic of algorithms. This dictionary offers a natural route to simulating quantum geometry, and could help clarify quantum theories that, like general relativity, do not rely on a fixed background.

Quantum clues

What would a genuine quantum theory of spacetime achieve, though? According to Esteban Castro Ruiz (IQOQI), it may have to recognise that reference frames, which are idealised physical systems used to define spatio-temporal distances, must themselves be treated as quantum objects. In the framework of quantum reference frames, notions such as entanglement, localisation and superposition become observer-dependent. This leads to a perspective-neutral formulation of quantum mechanics, which may offer clues for describing physics when spacetime is not only dynamical, but quantum.

The conference’s inclusive vocation came through most clearly in the thema­tic discussion sessions, including one on the infamous black-hole information problem chaired by Steve Giddings (UC Santa Barbara). A straightforward reading of Stephen Hawking’s 1974 result suggests that black holes radiate, shrink and ultimately destroy information – a process that is incompatible with standard quantum mechanics. Any proposed resolution must face sharp trade-offs: allowing information to escape challenges locality, losing it breaks unitarity and storing it in long-lived remnants undermines theoretical control. Giddings described a mild violation of locality as the lesser evil, but the controversy is far from settled. Still, there is growing consensus that dissolving the paradox may require new physics to appear well before the Planck scale, where quantum-gravity effects are expected to dominate.

Once the domain of pure theory, quantum gravity has become eager to engage with experiment

Among the few points of near-universal agreement in the quantum-gravity community has long been the virtual impossibility of detecting a graviton, the hypothetical quantum of the gravitational field. According to Igor Pikovski (Stockholm University), things may be less bleak than once thought. While the probability of seeing graviton-induced atomic transitions is negligible due to the weakness of gravity, the situation is different for massive systems. By cooling a macroscopic object close to absolute zero, Pikovski suggested, the effect could be amplified enough, with current interferometers simultaneously monitoring gravitational waves in the correct frequency window. Such a signal would not amount to a definitive proof of gravity’s quantisation, just as the photoelectric effect could not definitely establish the existence of photons, nor would it single out a specific ultraviolet model. However, it could constrain concrete predictions and put semiclassical theories under pressure. Giulia Gubitosi (University of Naples Federico II) tackled phenomenology from a different angle, exploring possible deviations from special relativity in models where spacetime becomes non-commutative. There, coordinates are treated like quantum operators, leading to effects like decoherence, modified particle speeds and soft departures from locality. Although such signals tend to be faint, they could be enhanced by high-energy astrophysical sources: observations of neutrinos corresponding to gamma-ray bursts are now starting to close in on these scenarios. Both talks reflected a broader, cultural shift: quantum gravity, once the domain of pure theory, has become eager to engage with experiment.

Quantum Gravity 2025 offered a wide snapshot of a field still far from closure, yet increasingly shaped by common goals, the convergence of approaches and cross-pollination. As intended, no single framework took centre stage, with a dialogue-based format keeping focus on the central, pressing issue at hand: understanding the quantum nature of spacetime. With limited experimental guidance, open exchange remains key to clarifying assumptions and avoiding duplication of efforts. Building on previous editions, the meeting pointed toward a future where quantum-gravity researchers will recognise themselves as part of a single, coherent scientific community.

CERN Courier Jobs

Events

bright-rec iop pub iop-science physcis connect